# 这是单行注释, 注释以井号开头 # 没有多行注释 # 但你可以堆叠多个注释。 # elixir shell 使用命令 `iex` 进入。 # 编译模块使用 `elixirc` 命令。 # 如果安装正确,这些命令都会在环境变量里 ## --------------------------- ## -- 基本类型 ## --------------------------- # 数字 3 # 整型 0x1F # 整型 3.0 # 浮点类型 # 原子(Atoms),以 `:`开头 :hello # atom # 元组(Tuple) 在内存中的存储是连续的 {1,2,3} # tuple # 使用`elem`函数访问元组(tuple)里的元素: elem({1, 2, 3}, 0) #=> 1 # 列表(list) [1,2,3] # list # 可以用下面的方法访问列表的头尾元素: [head | tail] = [1,2,3] head #=> 1 tail #=> [2,3] # 在elixir,就像在Erlang, `=` 表示模式匹配 (pattern matching) # 不是赋值。 # # 这表示会用左边的模式(pattern)匹配右侧 # # 上面的例子中访问列表的头部和尾部就是这样工作的。 # 当左右两边不匹配时,会返回error, 在这个 # 例子中,元组大小不一样。 # {a, b, c} = {1, 2} #=> ** (MatchError) no match of right hand side value: {1,2} # 还有二进制类型 (binaries) <<1,2,3>> # binary # 字符串(Strings) 和 字符列表(char lists) "hello" # string 'hello' # char list # 多行字符串 """ I'm a multi-line string. """ #=> "I'm a multi-line\nstring.\n" # 所有的字符串(Strings)以UTF-8编码: "héllò" #=> "héllò" # 字符串(Strings)本质就是二进制类型(binaries), 字符列表(char lists)本质是列表(lists) <> #=> "abc" [?a, ?b, ?c] #=> 'abc' # 在 elixir中,`?a`返回 `a` 的 ASCII 整型值 ?a #=> 97 # 合并列表使用 `++`, 对于二进制类型则使用 `<>` [1,2,3] ++ [4,5] #=> [1,2,3,4,5] 'hello ' ++ 'world' #=> 'hello world' <<1,2,3>> <> <<4,5>> #=> <<1,2,3,4,5>> "hello " <> "world" #=> "hello world" ## --------------------------- ## -- 操作符(Operators) ## --------------------------- # 一些数学运算 1 + 1 #=> 2 10 - 5 #=> 5 5 * 2 #=> 10 10 / 2 #=> 5.0 # 在 elixir 中,操作符 `/` 返回值总是浮点数。 # 做整数除法使用 `div` div(10, 2) #=> 5 # 为了得到余数使用 `rem` rem(10, 3) #=> 1 # 还有 boolean 操作符: `or`, `and` and `not`. # 第一个参数必须是boolean 类型 true and true #=> true false or true #=> true # 1 and true #=> ** (ArgumentError) argument error # Elixir 也提供了 `||`, `&&` 和 `!` 可以接受任意的类型 # 除了`false` 和 `nil` 其它都会被当作true. 1 || true #=> 1 false && 1 #=> false nil && 20 #=> nil !true #=> false # 比较有: `==`, `!=`, `===`, `!==`, `<=`, `>=`, `<` 和 `>` 1 == 1 #=> true 1 != 1 #=> false 1 < 2 #=> true # `===` 和 `!==` 在比较整型和浮点类型时更为严格: 1 == 1.0 #=> true 1 === 1.0 #=> false # 我们也可以比较两种不同的类型: 1 < :hello #=> true # 总的排序顺序定义如下: # number < atom < reference < functions < port < pid < tuple < list < bit string # 引用Joe Armstrong :“实际的顺序并不重要, # 但是,一个整体排序是否经明确界定是非常重要的。” ## --------------------------- ## -- 控制结构(Control Flow) ## --------------------------- # `if` 表达式 if false do "This will never be seen" else "This will" end # 还有 `unless` unless true do "This will never be seen" else "This will" end # 在Elixir中,很多控制结构都依赖于模式匹配 # `case` 允许我们把一个值与多种模式进行比较: case {:one, :two} do {:four, :five} -> "This won't match" {:one, x} -> "This will match and assign `x` to `:two`" _ -> "This will match any value" end # 模式匹配时,如果不需要某个值,通用的做法是把值 匹配到 `_` # 例如,我们只需要要列表的头元素: [head | _] = [1,2,3] head #=> 1 # 下面的方式效果一样,但可读性更好 [head | _tail] = [:a, :b, :c] head #=> :a # `cond` 可以检测多种不同的分支 # 使用 `cond` 代替多个`if` 表达式嵌套 cond do 1 + 1 == 3 -> "I will never be seen" 2 * 5 == 12 -> "Me neither" 1 + 2 == 3 -> "But I will" end # 经常可以看到最后一个条件等于'true',这将总是匹配。 cond do 1 + 1 == 3 -> "I will never be seen" 2 * 5 == 12 -> "Me neither" true -> "But I will (this is essentially an else)" end # `try/catch` 用于捕获被抛出的值, 它也支持 `after` 子句, # 无论是否值被捕获,after 子句都会被调用 # `try/catch` try do throw(:hello) catch message -> "Got #{message}." after IO.puts("I'm the after clause.") end #=> I'm the after clause # "Got :hello" ## --------------------------- ## -- 模块和函数(Modules and Functions) ## --------------------------- # 匿名函数 (注意点) square = fn(x) -> x * x end square.(5) #=> 25 # 也支持接收多个子句和卫士(guards). # Guards 可以进行模式匹配 # Guards 使用 `when` 关键字指明: f = fn x, y when x > 0 -> x + y x, y -> x * y end f.(1, 3) #=> 4 f.(-1, 3) #=> -3 # Elixir 提供了很多内建函数 # 在默认作用域都是可用的 is_number(10) #=> true is_list("hello") #=> false elem({1,2,3}, 0) #=> 1 # 你可以在一个模块里定义多个函数,定义函数使用 `def` defmodule Math do def sum(a, b) do a + b end def square(x) do x * x end end Math.sum(1, 2) #=> 3 Math.square(3) #=> 9 # 保存到 `math.ex`,使用 `elixirc` 编译你的 Math 模块 # 在终端里: elixirc math.ex # 在模块中可以使用`def`定义函数,使用 `defp` 定义私有函数 # 使用`def` 定义的函数可以被其它模块调用 # 私有函数只能在本模块内调用 defmodule PrivateMath do def sum(a, b) do do_sum(a, b) end defp do_sum(a, b) do a + b end end PrivateMath.sum(1, 2) #=> 3 # PrivateMath.do_sum(1, 2) #=> ** (UndefinedFunctionError) # 函数定义同样支持 guards 和 多重子句: defmodule Geometry do def area({:rectangle, w, h}) do w * h end def area({:circle, r}) when is_number(r) do 3.14 * r * r end end Geometry.area({:rectangle, 2, 3}) #=> 6 Geometry.area({:circle, 3}) #=> 28.25999999999999801048 # Geometry.area({:circle, "not_a_number"}) #=> ** (FunctionClauseError) no function clause matching in Geometry.area/1 #由于不变性,递归是Elixir的重要组成部分 defmodule Recursion do def sum_list([head | tail], acc) do sum_list(tail, acc + head) end def sum_list([], acc) do acc end end Recursion.sum_list([1,2,3], 0) #=> 6 # Elixir 模块支持属性,模块内建了一些属性,你也可以自定义属性 defmodule MyMod do @moduledoc """ 内置的属性,模块文档 """ @my_data 100 # 自定义属性 IO.inspect(@my_data) #=> 100 end ## --------------------------- ## -- 记录和异常(Records and Exceptions) ## --------------------------- # 记录就是把特定值关联到某个名字的结构体 defrecord Person, name: nil, age: 0, height: 0 joe_info = Person.new(name: "Joe", age: 30, height: 180) #=> Person[name: "Joe", age: 30, height: 180] # 访问name的值 joe_info.name #=> "Joe" # 更新age的值 joe_info = joe_info.age(31) #=> Person[name: "Joe", age: 31, height: 180] # 使用 `try` `rescue` 进行异常处理 try do raise "some error" rescue RuntimeError -> "rescued a runtime error" _error -> "this will rescue any error" end # 所有的异常都有一个message try do raise "some error" rescue x in [RuntimeError] -> x.message end ## --------------------------- ## -- 并发(Concurrency) ## --------------------------- # Elixir 依赖于 actor并发模型。在Elixir编写并发程序的三要素: # 创建进程,发送消息,接收消息 # 启动一个新的进程使用`spawn`函数,接收一个函数作为参数 f = fn -> 2 * 2 end #=> #Function spawn(f) #=> #PID<0.40.0> # `spawn` 函数返回一个pid(进程标识符),你可以使用pid向进程发送消息。 # 使用 `<-` 操作符发送消息。 # 我们需要在进程内接收消息,要用到 `receive` 机制。 defmodule Geometry do def area_loop do receive do {:rectangle, w, h} -> IO.puts("Area = #{w * h}") area_loop() {:circle, r} -> IO.puts("Area = #{3.14 * r * r}") area_loop() end end end # 编译这个模块,在shell中创建一个进程,并执行 `area_looop` 函数。 pid = spawn(fn -> Geometry.area_loop() end) #=> #PID<0.40.0> # 发送一个消息给 `pid`, 会在receive语句进行模式匹配 pid <- {:rectangle, 2, 3} #=> Area = 6 # {:rectangle,2,3} pid <- {:circle, 2} #=> Area = 12.56000000000000049738 # {:circle,2} # shell也是一个进程(process), 你可以使用`self`获取当前 pid self() #=> #PID<0.27.0>